

Summary

- 1. Forecasting coastal flood risk depends on physical processes on a wide range of scales
- 2. Require nested models
- 3. Constrain uncertainty: traditional methods and development of new methods (e.g. adjoint)
- 4. Climate change: UKCP09 http://ukclimateprojections.defra.gov.uk

Acknowledgements WP 2.3: Kevin Horsburgh, Judith Wolf, Lucy Bricheno, Matt Lewis, Samantha Royston, Jonathan Lawry, Laure Zanna

Acknowledgement

The research reported in this presentation was conducted as part of the Flood Risk Management Research Consortium with support from the:

- Engineering and Physical Sciences Research Council
- Department of Environment, Food and Rural Affairs/Environment Agency Joint Research Programme
- United Kingdom Water Industry Research
- Office of Public Works Dublin
- Northern Ireland Rivers Agency

Data were provided by the EA and the Ordnance Survey.

www.floodrisk.org.uk

EPSRC Grant: EP/FP202511/1